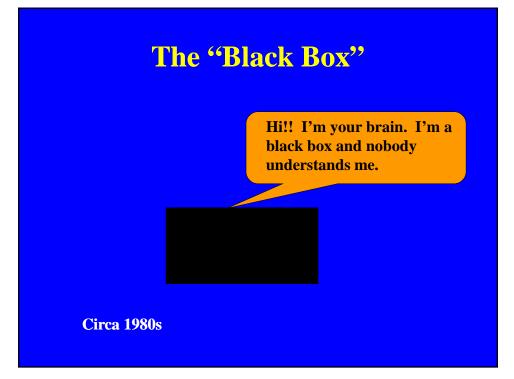
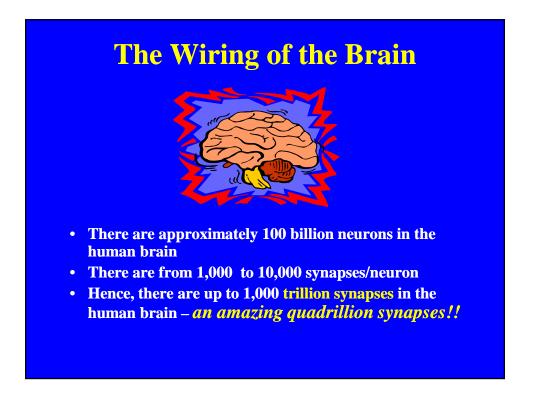


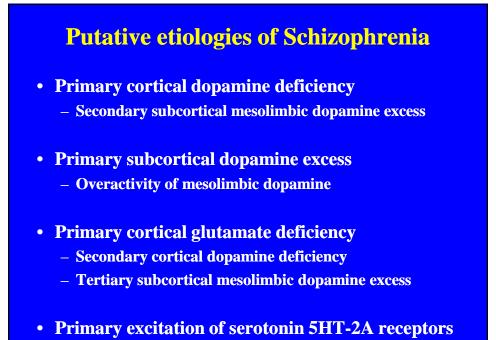
Clinician's Guide to Understanding Atypical Antipsychotic Drug Receptor Binding Properties

John J. Miller, M.D. Medical Director, Brain Health Exeter, NH

© Copyrighted 2016 by John J. Miller, M.D. Brain Health, Exeter, NH 03833

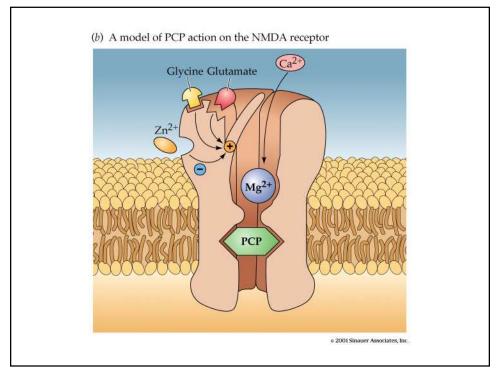



jjm@brain-health.co/


1

March 2016

John J. Miller, M.D. Medical Director, Brain Health

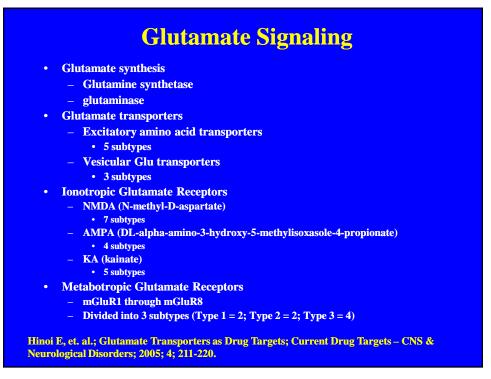


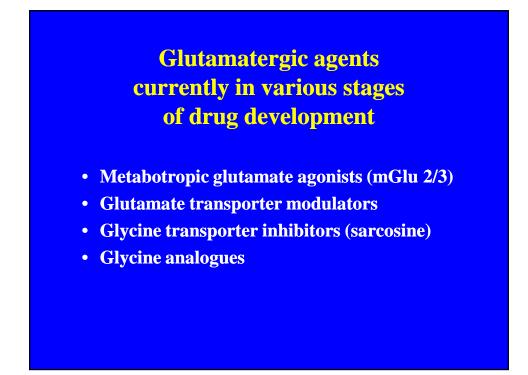
Animal models of schizophrenia

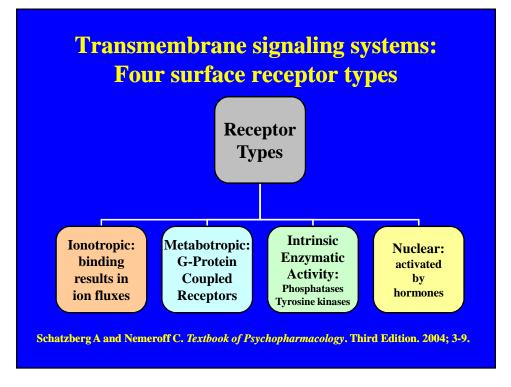
- NMDA-glutamate antagonists induce both positive and negative schizophrenialike symptoms in animal models:
 - Ketamine
 - Phencyclidine (PCP)

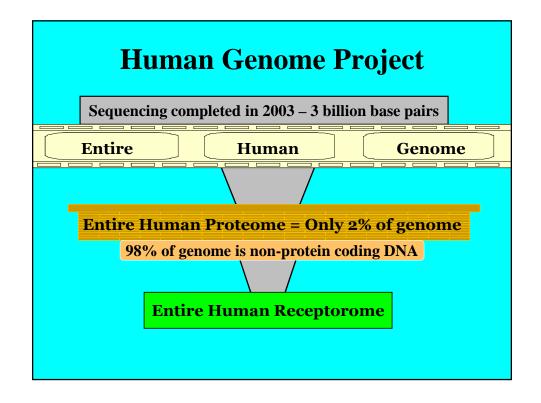
jjm@brain-health.co/

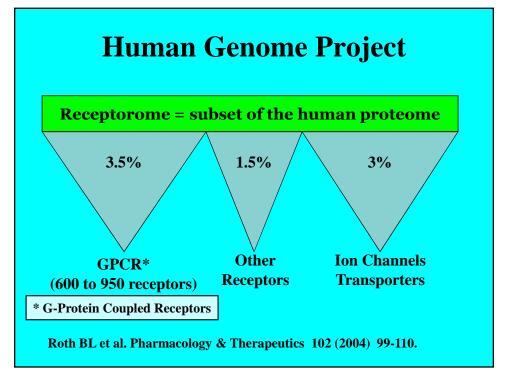
3

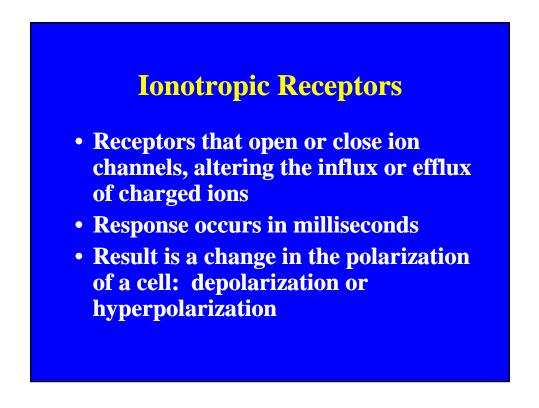

<section-header>

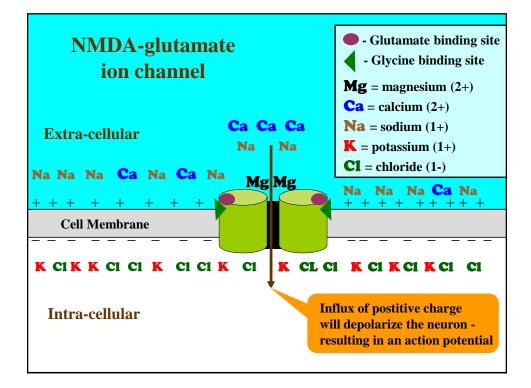

jjm@brain-health.co/

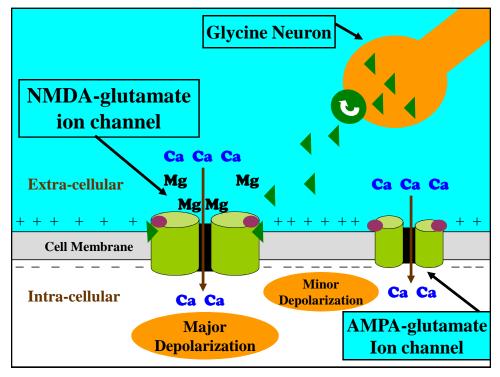

4

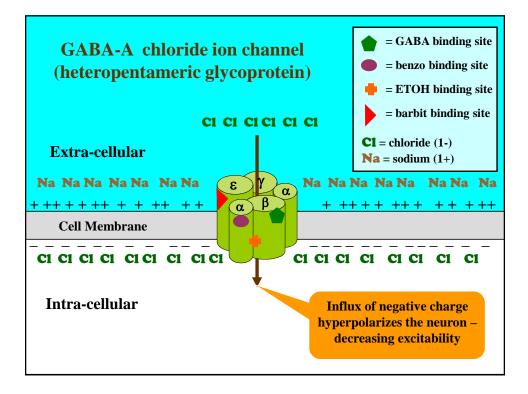

March 2016

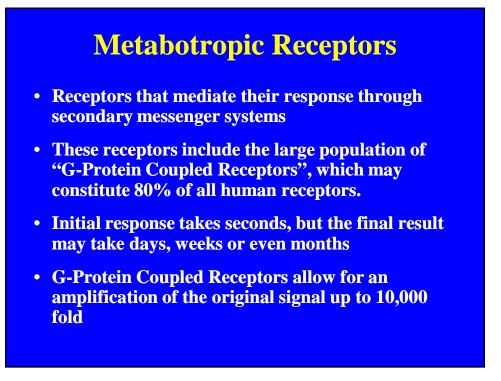

John J. Miller, M.D. Medical Director, Brain Health

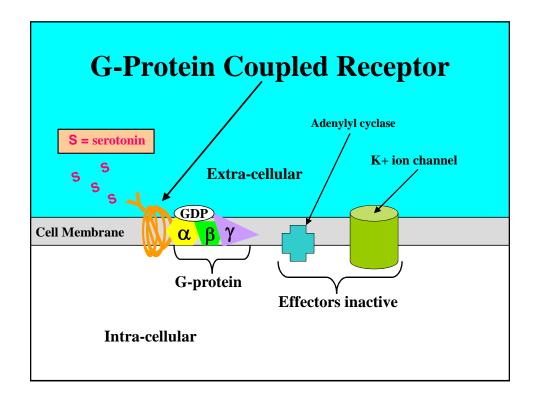


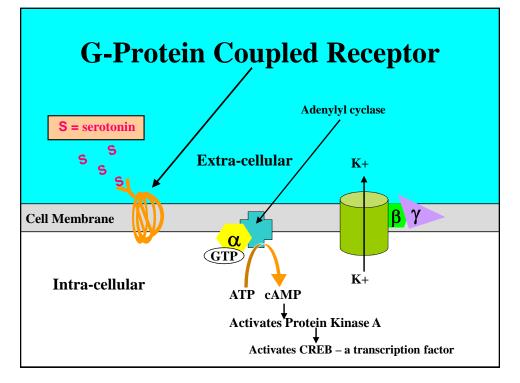

jjm@brain-health.co/

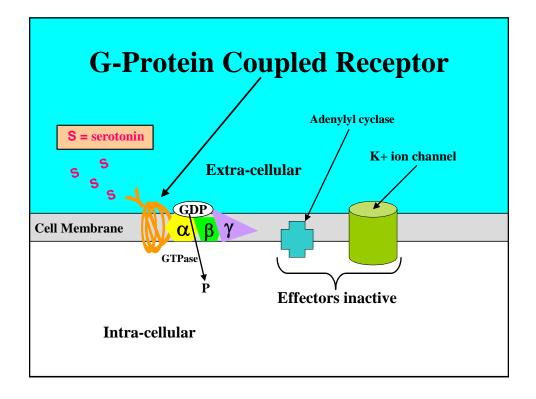

7


Two significant ionotropic receptor systems


• Glutamate


- The primary excitatory neurotransmitter
- NMDA-glutamate receptors manage influx of positive charge into neurons (Ca++, Na+)
- GABA (gamma-aminobutyric acid)
 - The primary inhibitory neurotransmitter
 - GABA-A receptors manage the influx of negative charge into neurons (Cl-)



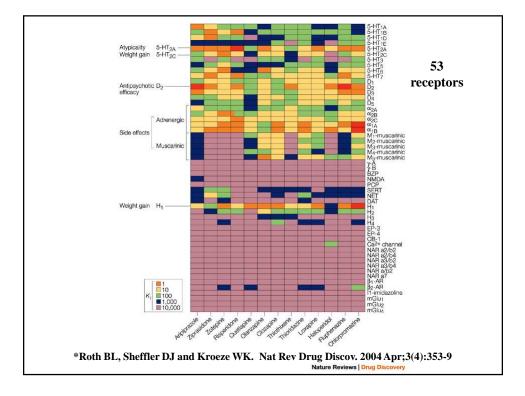


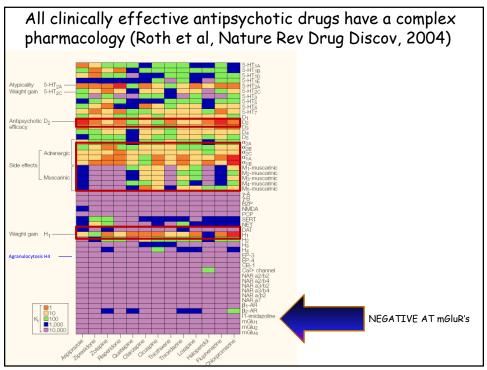
Receptor binding properties of antipsychotic medications

Complexity of the brain requires complex pharmacology

- "Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia"*
- Treatment of schizophrenia began with "dirty drugs" = Thorazine and Mellaril
- Evolved to clean "magic bullets" = Haldol
- Current paradigm supports "magic shotguns", drugs with activity at multiple receptors

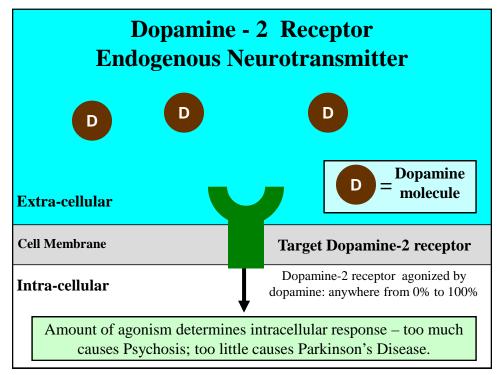
*Roth BL, Sheffler DJ and Kroeze WK. Nat Rev Drug Discov. 2004 Apr;3(4):353-9

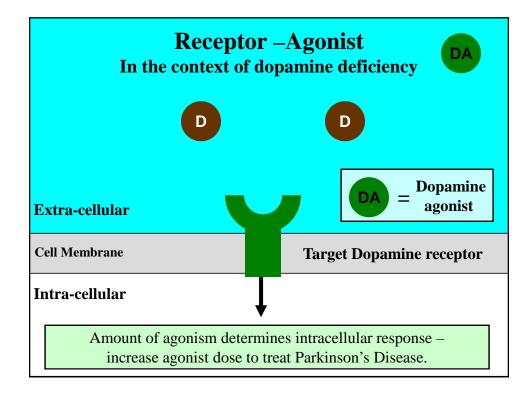

Complexity of the brain requires complex pharmacology

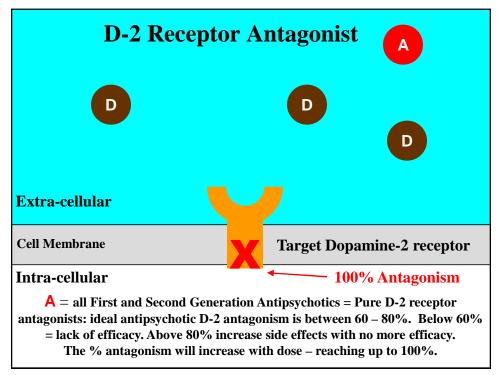

From Serendipity:

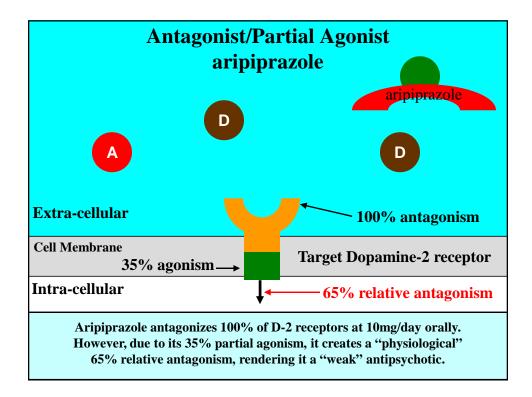
Chlorpromazine (Thorazine) – FDA approved 1954

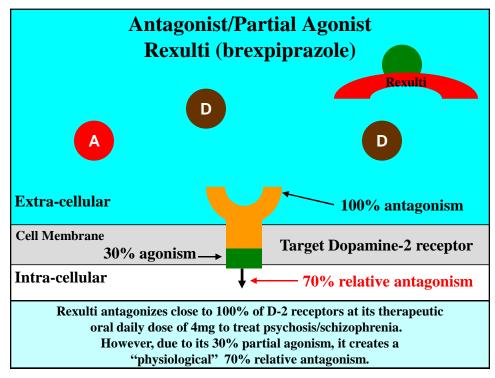
Antipsychotic efficacy discovered by a French physician in 1952 who observed that psychotic patients with nausea had both their nausea and psychosis improve with chlorpromazine.


To Molecular "fingerprinting":

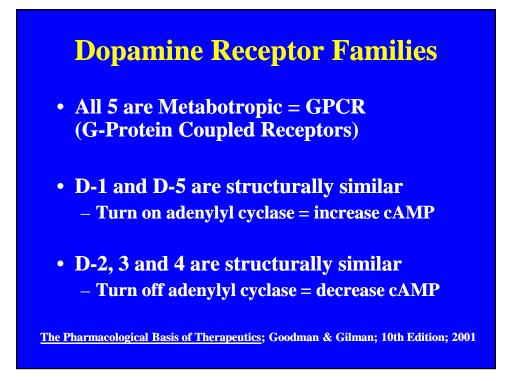


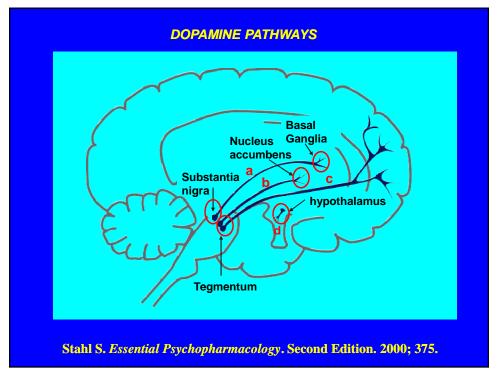


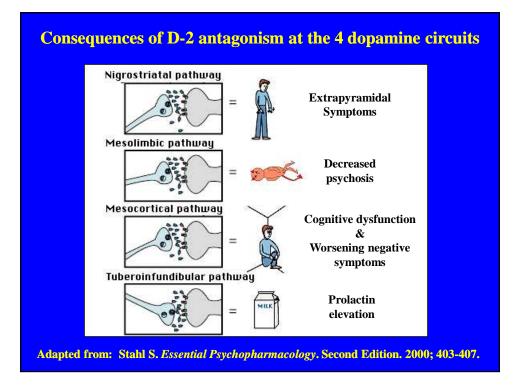

Pharmacology of antipsychotics First Generation = "typical" MOA = D-2 receptor antagonists Thorazine, Mellaril, Stelazine, Trilafon, Navane, Haldol, Prolixin, Orap and others Second Generation = "atypical" MOA = serotonin/dopamine receptor modulators 1958 clozapine developed; FDA approved 1989 risperidone, olanzapine, quetiapine, ziprasidone, paliperidone, iloperidone, asenapine and lurasidone


- Third Generation = "atypical"
 - MOA = dopamine receptor antagonist/partial agonist
 - aripiprazole, brexpiprazole, cariprazine

Note: may bind only D-2 receptor, or additional dopamine receptors = D-1, D-3, D-4 and D-5				
First Generation Second Generation Third Generation				
D-2 Antagonism as primary mechanism of action	5HT-2A antagonism is more potent than D-2 antagonism with varying activity at other 5HT receptors	Potent D-2 antagonism/ partial agonism with 5HT-2A antagonism and 5HT-1A partial agonism		

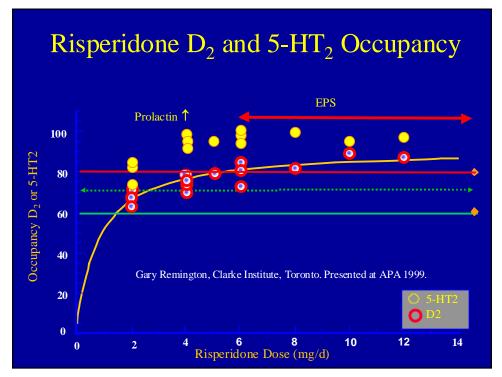

Monoamines are important neurotransmitters

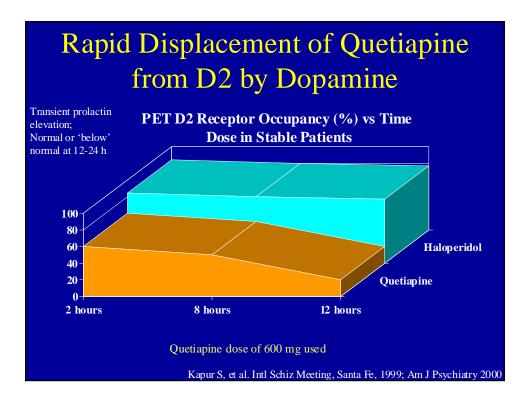

- Serotonin
- Dopamine
- Norepinephrine
- Epinephrine
- Melatonin
- Histamine



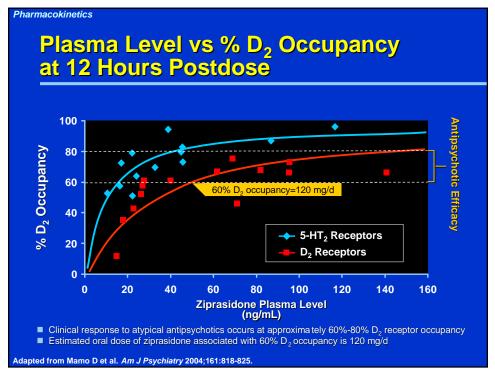
The Dopamine System

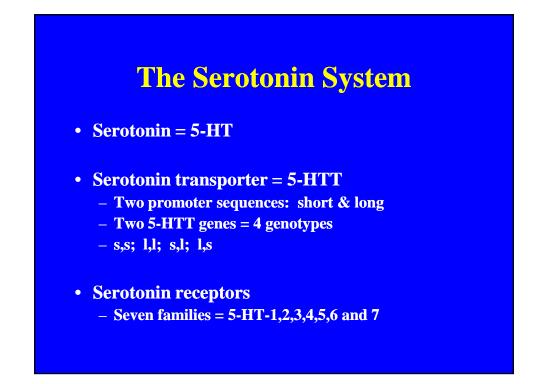
- Dopamine = D
- **Dopamine transporter = DAT**
- Dopamine receptors – Five families = D-1, 2, 3, 4 and 5





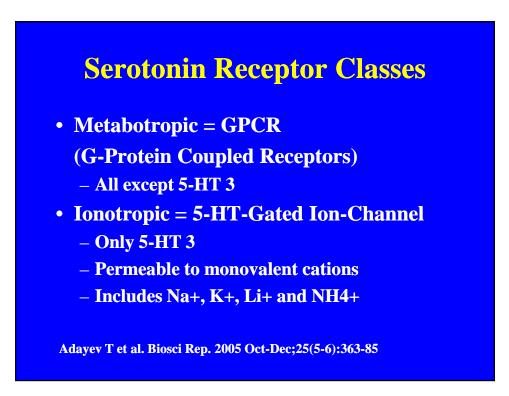
% Occupancy of D-2 receptors	Clinical Consequences
< 60%	minimal
60 - 80%	Antipsychotic/antimanic
> 70%	Elevation of prolactin
> 80%	Increasing EPS


Clozapine D₂ and 5-HT₂ Occupancy 100 Occupancy % D2 & 5HT2 80 "Glass ceiling" for D2 0 4 60 40 20 • 5HT₂ **O** D2 Zipursky 1997. Nordtrom et al. AM J Psych. 1995 0 200 100 0 300 400 500 600 700 800 Clozapine (m o Id)



March 2016

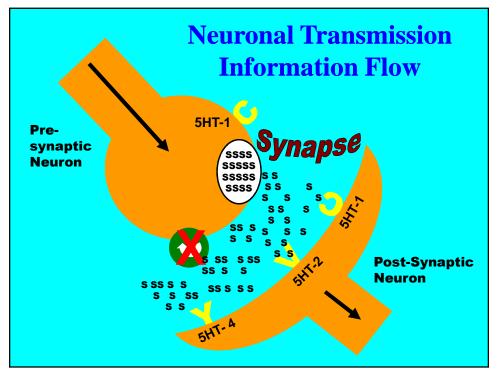
John J. Miller, M.D. Medical Director, Brain Health

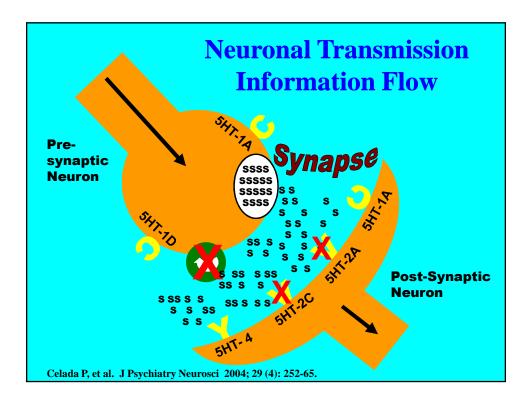


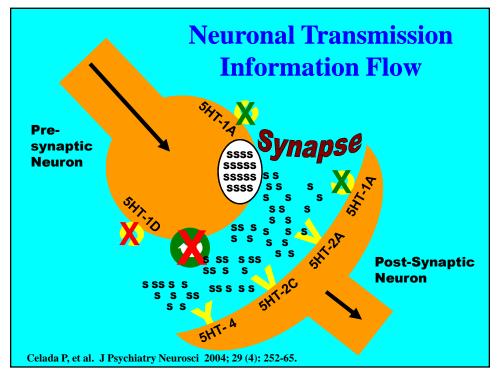
Serotonin Receptor Families

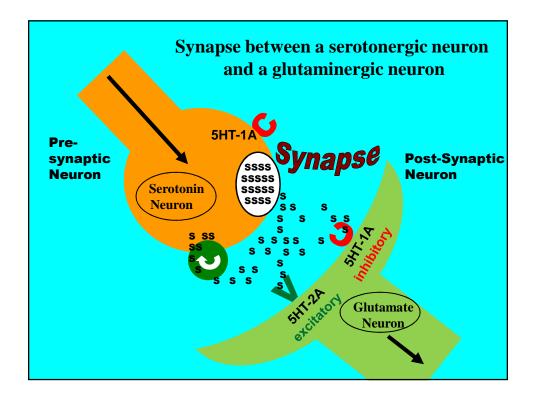
- 5-HT 1A, B, D, E, F
- 5-HT 2A, B, C
- 5-HT 3A, B
- 5-HT 4A, B, C, D, E, F, H
- 5-HT 5A, B
- 5-HT 6
- 5-HT 7

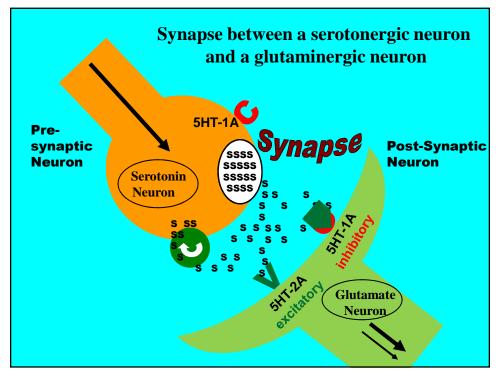
Adayev T et al. *Biosci Rep.* 2005 Oct-Dec;25(5-6):363-85 Pytliak M. 2011. *Physiol Res.* 60: 15-25. Stahl SM. <u>Stahl's Essential Psychopharmacology</u>. 2008. Khan A. *Expert Opin Investig Drugs*. 2009; 18: 1753-1764. Barnes NM and Sharp T. *Neuropharmacology*. 1999: 38: 1083-1152.

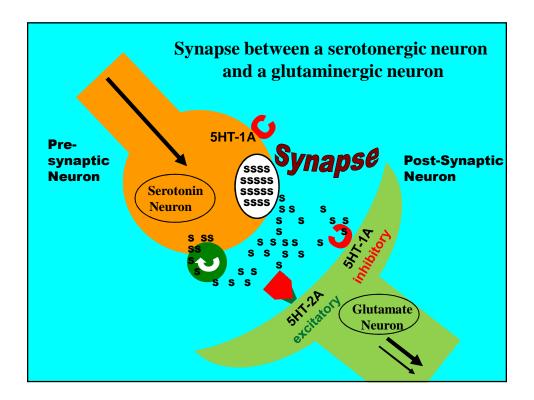


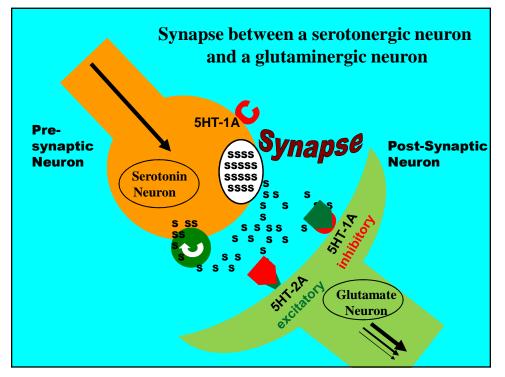

Pharmacological Agents Targeting Specific Serotonin Sub-receptors				
Receptor	Drug	Putative Activity		
5HT-1A	agonists = buspirone, gepirone, tandospirone	Anti-depressant, Anti-anxiety, Cognitive improvement		
5HT-1B	agonist = triptans	Anti-migraine		
5HT-1D	agonist = triptans	Anti-migraine		
5HT-2A	antagonist = nefazodone, atypical antipsychotics	Anti-depressant, Anti-anxiety, Cognitive improvement		
5HT-2B	agonist = fenfluramine	Causes cardiac valve disease		
5HT-2C	agonist = mCPP antagonist = agomelatine	Anxiogenic Novel Antidepressant		
5HT-3	antagonist = ondansetron	Rx nausea/vomitting		
5HT-4	agonist = tegaserod	Rx constipation		

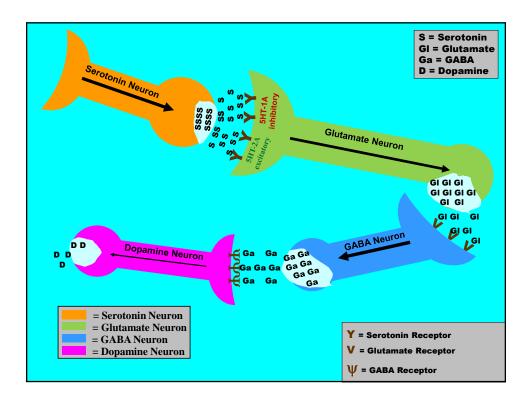

Putative clinical effects of various serotonin (5-HT) sub-receptors

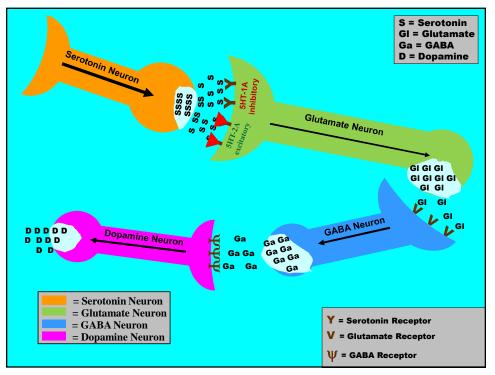

- 5-HT 2A antagonism
 - Increases dopamine release
 - Likely antidepressant effect
 - Decreases EPS
 - Improves negative symptoms
- 5-HT 2C antagonism
 - May increase dopamine/norepinephrine in cortex
 - Improves cognitive symptoms
 - Improves affective symptoms
- 5-HT 1A agonism
 - Improves cognition, anxiety and depression
- 5-HT 1D antagonism
 - Disinhibits presynaptic serotonin release
 - Antidepressant and antianxiety effects

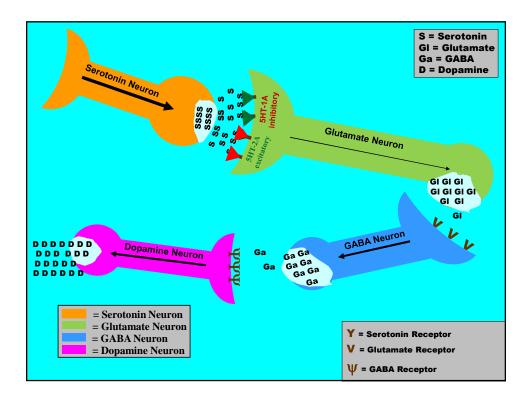

Stahl, S. & Shayegan, D.; J Clin Psych; 2003; 64 [suppl 19]: 6-12











jjm@brain-health.co/

www.brain-health.co/ 30

- Epinephrine = E
- Norepinephrine = NE
- Noradrenergic transporter = NET
- Adrenergic receptors

 Three families = α1, α2, β

Adrenergic Receptor Families

- Alpha $1 = \alpha 1A$, $\alpha 1B$, and $\alpha 1D$
- Alpha 2 = α 2A, α 2B, and α 2C
- Beta = $\beta 1$, $\beta 2$ and $\beta 3$
- All are metabotropic = GPCR (G-Protein Coupled Receptors)

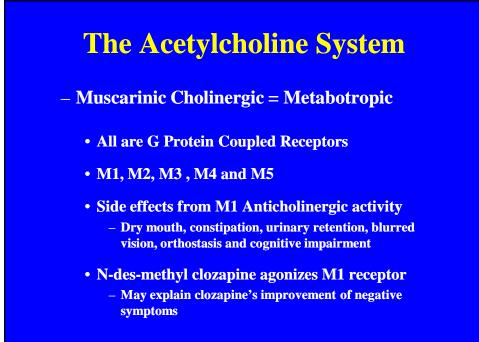
The Pharmacological Basis of Therapeutics; Goodman & Gilman; 10th Edition; 2001

Alpha Adrenergic Receptor Antagonism Effects

• Alpha 1 antagonism (prazosin)

- Side effects include transient:
 - Sedation
 - Orthostasis
 - Syncope
- Alpha 2 antagonism (mirtazapine)
 - Benefits include:
 - Elevation of synaptic norepinephrine
 - Elevation of synaptic serotonin

The Pharmacological Basis of Therapeutics; Goodman & Gilman; 10th Edition; 2001


The Histamine System

- Histamine receptors = H1, H2, H3 and H4
- G-Protein Coupled Receptors
- Side effects from CNS H1 antagonism:
 - Sedation
 - Weight gain
 - Increased appetite
 - Paradoxical excitation
 - restlessness, nervousness and insomnia
- H2 antagonist currently in development
 - Histamine pre-synaptic auto-receptor
 - Increases attention and wakefulness

The Acetylcholine System

- Nicotinic Cholinergic = Ionotropic

- Pentamer ion channels with diverse subunits
- 17 genes code for:
 - 10 alpha subunits
 - 4 beta subunits
 - 1 gamma subunit
 - 1 delta subunit
 - 1 epsilon subunit
- Varenicline (Chantix)
 - Alpha 4 (two subunits)/beta 2 (three subunits) antoginst/partial agonist
 - At 1mg BID antagonizes 100% of this ionotropic receptor
 - Simultaneously agonizes 45% of this receptor resulting in dopamine release in the nucleus accumbens

Atypical	Primary	Secondary
Aripiprazole	2D6, 3A4	-
Asenapine	UGT1A4, 1A2	3A4, 2D6
Clozapine	1A2	3A4, 2D6, 2C9, 2C19
Iloperidone	2D6, 3A4	-
Lurasidone	3A4	-
Olanzapine	1A2	2D6
Paliperidone	3A4	-
Quetiapine	3A4	-
Risperidone	2D6, 3A4	-
Ziprasidone	Aldehyde oxidase	3A4
Brexpiprazole	2D6, 3A4	-
Cariprazine	3A4	2D6

Atypical	T 1/2	Oral Tmax	Protein Bindin
Aripiprazole	75 hours	3-5 hours	99%
Asenapine	24 hours	1 hour	95%
Clozapine	12 hours	2.5 hours	97%
Iloperidone	18-33 hours	2-4 hours	95%
Lurasidone	18 hours	1-3 hours	99%
Olanzapine	30 hours	6 hours	93%
Quetiapine	6 hours	1.5 hours	83%
Paliperidone	23 hours	24 hours	74%
Risperidone*	20-30 hours	1 hour	90%
Ziprasidone	7 hours	6-8 hours	99%
Brexpiprazole	91 hours	4 hours	<mark>99%</mark>
Cariprazine	1-3 weeks	3-6 hours	91-97%

DA approved product inserts for each antipsychotic

Active Metabolites of Atypical Antipsychotics			
Atypical Antipsychotic	Metabolite		
Clozapine (Clozaril)	N-desmethylclozapine		
Risperidone (Risperdal)	9-hydroxyrisperidone (paliperidone)		
Olanzapine (Zyprexa)	no active metabolites		
Quetiapine (Seroquel)	N-desalkylquetiapine (norquetiapine)		
Ziprasidone (Geodon)	no active metabolites		
Aripiprazole (Abilify)	dehydro-aripiprazole		
Paliperidone (Invega)	no active metabolites		
Iloperidone (Fanapt)	P88, P95		
Asenapine (Saphris)	"primarily due to the parent drug"		
Lurasidone (Latuda)	"primarily due to the parent drug"		
Brexpiprazole (Rexulti)	"DM-3411 is considered not to contribute"		
Cariprazine (Vraylar)	desmethyl and didesmethyl cariprazine		

Equilibrium dissociation constants for antipsychotic drugs at human brain receptors

	Aripipraz*	Haloperidol	Ziprasidone	9-OH-ris	Risperidone	Olanzapine	Clozapine	Quetiapine
D-2	0.34	2.6	2.6	2.8	3.77	20	210	770
5HT-2A	3.4	61	0.12	1.21	0.15	1.48	2.59	31
2HT-2C	15	4,700	0.9	48	32	4.1	4.8	3,500
5HT-1A	1.7	1,800	1.9	480	190	610	160	300
5HT-1D	-	40	2.4	19	3.9	150	130	560
Alpha-1	57	17	2.6	10.1	2.7	44	6.8	8.1
Alpha-2	-	600	154	80	8	280	15	80
histamine	61	260	4.6	3.4	5.2	0.087	3.1	19
M-cholin	>1000	>10,000	2,440	8,800	34,000	36	9	1,400

Richelson E, Souder T: Binding of antipsychotic drugs to human brain receptors: Focus on newer generation compounds. Life Sci 68: 29-39, 2000 [Kd (nM)] *From FDA approved product insert - 2007 [Ki (nM)]

March 2016

John J. Miller, M.D. Medical Director, Brain Health

Receptor	Kd (nM)
Dopamine D-2	2.6
Alpha-adrenergic-1	17
Serotonin 5-HT 1D	40
Serotonin 5-HT 2A	61
Histaminergic	260
Alpha-adrenergic-2	600
Serotonin 5-HT 1A	1,800
Serotonin 5-HT 2C	4,700
Cholinergic- Muscarinic	>10,000

Receptor	Ki (nM)
Histaminergic 1	1.1
Alpha-adrenergic 1A	1.6
Serotonin 5HT 6	4.0
Serotonin 5-HT 2A	5.4
Cholinergic- Muscarinic 1	6.2
Serotonin 5-HT 7	6.3
Serotonin 5-HT 2C	9.4
Alpha-adrenergic-2A	90
Serotonin 5-HT 3	95
Serotonin 5-HT 1A	120
Dopamine D-2	160

Receptor	Ki (nM)
Serotonin 5-HT 2A	4
Serotonin 5-HT 6	5
Histaminergic 1	7
Serotonin 5-HT 2C	11
Alpha-adrenergic 1	19
Dopamine D-2	20
Serotonin 5-HT 3	57
Cholinergic- Muscarinic	73
Alpha-adrenergic-2	280

Receptor binding affinities of quetiapine and its active metabolite N-desalkyl quetiapine (norquetiapine)

Receptor	Ki (nM)	Ki (nM)			
	quetiapine	norquetiapine			
Histamine 1	4.41	1.15			
Alpha-adrenergic 1B	14.6	46.4			
Serotonin 5-HT 2A	38	2.9			
Norepinephrine transporter	>1000	34.8			
Serotonin 5-HT 1A	1040	191			
Dopamine D-2	626	489			
Cholinergic- Muscarinic	1,086	38.3			
Alpha-adrenergic 2	617	1290			
FDA approved 2013 product insert					

March 2016

John J. Miller, M.D. Medical Director, Brain Health

Receptor binding affinities of: risperidone 9-OH-risperidone				
Receptor	Kd (nM)	Receptor	Kd (nM)	
Serotonin 5-HT 2A	0.15	Serotonin 5-HT 2A	1.21	
Alpha-adrenergic-1	2.7	Dopamine D-2	2.8	
Dopamine D-2	3.77	Histaminergic	3.4	
Serotonin 5-HT 1D	3.9	Alpha-adrenergic-1	10.1	
Histaminergic	5.2	Serotonin 5-HT 1D	19	
Alpha-adrenergic-2	8	Serotonin 5-HT 2C	48	
Serotonin 5-HT 2C	32	Alpha-adrenergic-2	80	
Serotonin 5-HT 1A	190	Serotonin 5-HT 1A	480	
Cholinergic-Muscarinic	34,000	Cholinergic- Muscarinic	8,800	

Richelson E, Souder T: Binding of antipsychotic drugs to human brain receptors: Focus on newer generation compounds. Life Sci 68: 29-39, 2000

-			• • •	
Recen	tor hind	ling affin	ities of 7	iprasidone
neccp				

Receptor	Ki (nM)
Serotonin 5-HT 2A	0.4
Serotonin 5-HT 2C	1.3
Serotonin 5-HT 1D	2.0
Serotonin 5-HT 1A	3.4
Dopamine D-2	4.8
Alpha-adrenergic 1	10
Histaminergic 1	47
Cholinergic- Muscarinic	>1,000

FDA approved 2014 product insert

ceptor binding :	affinities of	(aripiprazo
Receptor	Ki (nM)	Activity
Dopamine D-2	0.34	Ant/Part Agon
Serotonin 5-HT 1A	1.7	Ant/Part Agon
Serotonin 5-HT 2A	3.4	Antagonist
Serotonin 5-HT 2C	15	Antagonist
Serotonin 5-HT 7	39	Antagonist
Alpha-adrenergic-1	57	Antagonist
Histaminergic	61	Antagonist
Cholinergic-Muscarinic	>1000	Antagonist

FDA approved 2014 product insert

Receptor binding affinities of iloperidone

Receptor	Ki (nM)
Alpha-adrenergic-1	0.36
Serotonin 5-HT 2A	5.6
Dopamine D-2	6.3
Serotonin 5-HT 7	22
Serotonin 5-HT 1A	168
Histaminergic	473
Cholinergic-Muscarinic	>1000

FDA approved 2014 product insert


	l receptor Ki'
Ki (nM)	
0.03	
0.06	
0.13	
1.0	
1.2	
1.3	
2.5	
8128	
	Ki (nM) 0.03 0.06 0.13 1.0 1.2 1.3 2.5

	Receptor	Ki (nM)
Receptor	Serotonin 5-HT 2C	0.03
binding	Serotonin 5-HT 2A	0.06
affinities of	Serotonin 5-HT 7	0.13
	Serotonin 5-HT 2B	0.16
asenapine	Serotonin 5-HT 6	0.25
	Dopamine D-3	0.42
	Histaminergic	1.0
	Dopamine D-4	1.1
FDA approved 2014	Alpha-adrenergic-1,2	1.2
product insert	Dopamine D-2	1.3
	Dopamine D-1	1.4
	Serotonin 5-HT 5	1.6
	Serotonin 5-HT 1A	2.5
	Serotonin 5-HT 1B	4.0
	Cholinergic-Muscarinic	8128

ptor binding affin	ities of lu
Receptor	Ki (nM)
Serotonin 5-HT 2A	0.5
Serotonin 5-HT 7	0.5
Dopamine D-2	1.0
Serotonin 5-HT 1A	6.4
Alpha-adrenergic-2c	11
Alpha-adrenergic-2a	41
Histamine-H-1	>1,000
Cholinergic- Muscarinic-1	>1,000

Receptor	Ki (nM)	Activity
Serotonin 5-HT 1A	0.12	Ant/Part Agon
Alpha-adrenergic 1B	0.17	Antagonist
Dopamine D 2	0.3	Ant/Part Agon
Serotonin 5-HT 2A	0.47	Antagonist
Alpha-adrenergic 2C	0.59	Antagonist
Alpha-adrenergic 1D	2.6	Antagonist
Serotonin 5-HT 7	3.7	Antagonist
Alpha-adrenergic 1A	3.8	Antagonist
Histaminergic 1	19	Antagonist

Receptor	Ki (nM)	Activity
Dopamine D-3	0.085	Ant/Part Agon
Dopamine D-2L	0.49	Ant/Part Agon
Serotonin 5-HT 2B	0.58	Antagonist
Dopamine D-2S	0.69	Ant/Part Agon
Serotonin 5-HT 1A	2.6	Ant/Part Agon
Serotonin 5-HT 2A	18.8	Antagonist
Histaminergic – 1	23.2	Antagonist
Serotonin 5-HT 2C	134	Antagonist
Noradrenergic alpha 1A	155	Antagonist
Cholinergic-Muscarinic	>1000	Antagonist

jjm@brain-health.co/

42